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Nonsingular flows

The setting

M a closed manifold, dim M = n.
F a codimension one foliation on M.
φt : M → M, t ∈ R a foliated flow (i.e., φt takes each leaf to a leaf).

A Lefschetz number of the flow φ:

L(φ) =
n−1∑
j=0

(−1)jTr (φ∗ : H j → H j)

H j is some cohomology theory associated to F , Tr is some trace.

The corresponding Lefschetz trace formula:

L(φ) = a contribution of closed orbits and fixed points of the flow.

Yuri A. Kordyukov (Ufa, Russia) Lefschetz trace formulas for flows Glances@Manifolds II 2 / 37



Nonsingular flows

Simple flows

Definition
A closed orbit c of period l (not necessarily minimal) of the flow φ is
called simple, if

det(id−φl
∗ : TxF → TxF) 6= 0, x ∈ c.

Definition
A fixed point x of the flow φ is called simple if

det(id−φt
∗ : TxM → TxM) 6= 0, t 6= 0.

Fix(φ) the fixed point set of φ (closed in M).
M0 the F-saturation of Fix(φ) (the union of leaves with fixed
points).
Observe that M0 is φ-invariant.
M1 = M \M0 the transitive point set.
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Nonsingular flows

Simple flows

Definition
The foliated flow φ is simple, i.e.:

all of its fixed points and closed orbits are simple,
its orbits in M1 are transverse to the leaves:

TxM = RZ (x)⊕ TxF , x ∈ M1,

where Z is the infinitesimal generator of φ (a vector field on M).

F is a foliation almost without holonomy:
If φ is simple, then:

M0 is a finite union of compact leaves,
only the leaves in M0 may have non-trivial holonomy groups.
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Nonsingular flows

Guiilemin-Sternberg formula

There is a canonical expression for the right-hand side of the Lefschetz
trace formula, which follows from the Guiilemin-Sternberg formula.

In D′(R+),

L(φ) =
∑

c

l(c)
∞∑

k=1

εkl(c)(c)δkl(c) +
∑

p

εp|1− eκp t |−1,

c runs over all closed orbits and p over all fixed points of φ:
l(c) the minimal period of c,
εl(c) := sign det

(
id−φl

∗ : TxF → TxF
)
, x ∈ c.

εp := sign det
(
id−φt

∗ : TpF → TpF
)
, t > 0.

κp 6= 0 is a real number such that

φ̄t
∗ : TpM/TpF → TpM/TpF , x 7→ eκp tx .
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Nonsingular flows

Problems

Problem
To define a Lefschetz number of the flow φ:

L(φ) =
n−1∑
j=0

(−1)jTr (φ∗ : H j → H j)

H j is some cohomology theory associated with F ,
Tr is a trace,

in such a way that the above Guillemin-Sternberg formula holds.

Motivation:
Deninger’s program to study zeta- and L-functions for algebraic
schemes over the integers, in particular, the Riemann zeta-function
(Berlin, ICM, 1998).
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Nonsingular flows

Nonsingular flows

ASSUMPTIONS:
M a closed manifold, dim M = n.
F a codimension one foliation on M.
φt : M → M, t ∈ R a simple foliated flow.
φ has no fixed points.

Jesús A. Álvarez López, Y. K., Distributional Betti numbers of transitive
foliations of codimension one. Foliations: geometry and dynamics
(Warsaw, 2000), 159–183, World Sci. Publ., River Edge, NJ, 2002.
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Nonsingular flows

Leafwise de Rham complex

(Ω(F),dF ) the leafwise de Rham complex of F :
Ω·(F) = C∞(M,Λ·T ∗F) smooth leafwise differential forms;
dF : Ω·(F)→ Ω·+1(F) the leafwise de Rham differential.

In a foliated chart with coordinates (x1, . . . , xn−1, y) ∈ Rn−1 × R such
that leaves are given by y = c, a p-form ω ∈ Ωp(F) is written as

ω =
∑

α1<α2<...<αp

aα(x , y)dxα1 ∧ . . . ∧ dxαp

and dFω ∈ Ωp+1(F) is given by

dFω =
n−1∑
j=1

∑
α1<α2<...<αp

∂aα
∂xj

(x , y)dxj ∧ dxα1 ∧ . . . ∧ dxαp
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Nonsingular flows

Leafwise de Rham cohomology

The reduced leafwise de Rham cohomology of F :

H(F) = ker dF/im dF ,

the closure is in C∞-topology.
φ is a foliated flow =⇒ dF ◦ φt = φt ◦ dF .
The induced action:

φt∗ : H(F)→ H(F).

Question

The trace of φt∗ : H(F)→ H(F)?
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Nonsingular flows

The leafwise Hodge decomposition

F is a Riemannian foliation.
g the Riemannian metric on M such that the infinitesimal
generator Z of the flow φ is of length one and is orthogonal to the
leaves — a bundle-like metric.
∆F = dFδF + δFdF the leafwise Laplacian on Ω(F)
(a second order tangentially elliptic differential operator on M).
H(F) the space of leafwise harmonic forms on M:

H(F) = {ω ∈ Ω(F) : ∆Fω = 0}.

Theorem (Alvarez Lopez - Yu. K)
The Hodge isomorphism

H(F) ∼= H(F).
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Nonsingular flows

Transverse ellipticity

The leafwise de Rham complex (Ω(F),dF ) of F as well as the leafwise
Laplacian ∆F are transversally elliptic relative to the action of the
group R, given by the flow φ

The principal symbol σ(∆F ) of ∆F is a section of the vector
bundle Hom(π∗Λ·T ∗F) over T ∗M (actually, a scalar function).
Here π : T ∗M → M is a natural projection.
Transverse ellipticity means that σ(∆F )(x , ξ) is invertible for any
(x , ξ) ∈ T ∗M \ 0 such that 〈ξ,Z (x)〉 = 0, where Z is the
infinitesimal generator of φ
(in other words, for any (x , ξ) ∈ T ∗M orthogonal to the orbits of φ).
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Nonsingular flows

The index theory for transversally elliptic operators

Atiyah-Singer, 1973-1974, for compact Lie groups;
Singer-Hörmander, 1974, definition of the index for noncompact
Lie groups.

For any f ∈ C∞c (R), define

Af =

∫
R
φt∗ · f (t) dt ◦ Π : L2Ω(F)→ L2Ω(F),

where Π : L2Ω(F)→ L2H(F) is the orthogonal projection.

Af is a smoothing operator:

For any f ∈ C∞c (R), the Schwartz kernel KAf = KAf (x , y)|dy | is smooth:

Af u(x) =

∫
M

KAf (x , y)u(y)|dy |.

Yuri A. Kordyukov (Ufa, Russia) Lefschetz trace formulas for flows Glances@Manifolds II 12 / 37



Nonsingular flows

The Lefschetz distribution

In particular, Af is of trace class and

Tr Af =

∫
M

tr KAf (x , x)|dx |.

The Lefschetz distribution L(φ) ∈ D′(R):

< L(φ), f >= Trs Af :=
n−1∑
j=1

(−1)j Tr A(i)
f , f ∈ C∞c (R),

where A(i)
f is the restriction of Af to Ωi(F).
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Nonsingular flows

The Lefschetz formula

Theorem (Alvarez Lopez - Y.K.)
Assume that φ is simple and has no fixed points.

On R \ {0}
L(φ) =

∑
c

l(c)
∑
k 6=0

εkl(c)(c)δkl(c),

when c runs over all closed orbits of φ and l(c) denotes the
minimal period of c.
In some neighborhood of 0 in R:

L(φ) = χΛ(F) · δ0.

χΛ(F) the Λ-Euler characteristic of F given by the holonomy invariant
transverse measure Λ (Connes, 1979).
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Singular flows

The setting

ASSUMPTION:
M a closed manifold, dim M = n.
F a codimension one foliation on M.
φt : M → M, t ∈ R a simple foliated flow.

Fix(φ) the fixed point set of φ (closed in M).
M0 the F-saturation of Fix(φ) (the union of leaves with fixed
points).
M1 = M \M0 the transitive point set.

Definition
The foliated flow φ is simple, i.e.:

all of its fixed points and closed orbits are simple,
its orbits in M1 are transverse to the leaves.
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Singular flows

Difficulties

The leafwise de Rham complex (Ω(F),dF ) of F as well as the
leafwise Laplacian ∆F are transversally elliptic only on the
transitive point set M1, not on M0.
As a consequence, the operator

Af =

∫
R
φt∗ · f (t) dt ◦ Π : L2Ω(F)→ L2Ω(F)

is not a smoothing operator. Its Schwartz kernel is smooth on
M1 ×M1 and singular near M0 ×M0.
So its trace is not well-defined.
I don’t discuss the leafwise de Rham complex (Ω(F),dF ) and
related Hodge theory (an open problem).
Observe that F is not Riemannian.
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Singular flows

The transitive point set and its blow-up

M1
l , l = 1, . . . , r , the connected components of M1:

(M1,F1) =
⊔

l

(M1
l ,F1

l ).

M l is the closure of M1
l : M l = M1

l .
Thus, Ml is a connected compact manifold with boundary,
endowed with a smooth foliation Fl tangent to the boundary.
Put Mc :=

⊔
l Ml ,F c :=

⊔
l Fl .

A smooth surjective local embedding π : (Mc,F c)→ (M,F):

for each l , π : M̊l → M1
l is a diffeomorphism;

π : ∂Mc → M0 is a 2-fold covering map whose restriction to every
connected component is a diffeomorphism.

φt lifts to a simple foliated flow φc,t of F c tangent to ∂Mc.
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Singular flows

Riemannian metric of bounded geometry

There is a Riemannian metric g1 on the transitive point set M1:

g1 is bundle-like for F1;
M1

l equipped with gl := g1|M1
l

is a manifold of bounded geometry;

F1
l a Riemannian foliation of bounded geometry;

φt
l a flow of bounded geometry.

Remarks:

Observe that g1 is singular at M0.
Each (M1

l ,g
1
l ) is a Riemannian manifold with cylindrical ends.

We use a very concrete choice of such a metric g1. To introduce it, we
need to describe a local structure of the foliation near M0.
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Singular flows

Suspension construction

Using the local stability theorem, one can show that F can be
described around a leaf L in M0 by using the suspension construction.

The data:
L a connected closed manifold;
a homomorphism (the holonomy homomorphism)

h̄ : Γ := π1L/ ker h→ Diffeo+(R,0), γ 7→ h̄γ , h̄γ(x) = aγx ,

where γ ∈ Γ 7→ aγ ∈ R+ is a homomorphism.
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Singular flows

Suspension construction

The holonomy covering

π : L̃→ L the regular covering map with

π1L̃ ≡ ker h⇔ Aut(π) ≡ Γ.

The canonical left action of each γ ∈ Γ on L̃ is denoted by ỹ 7→ γ · ỹ .

The suspension manifold defined by the above data:

ML = L̃×Γ R the orbit space for the diagonal Γ-action on M̃L = L̃× R:

γ · (ỹ , x) = (γ · ỹ ,aγ x). (ỹ , x) ∈ L̃× R.

Let [ỹ , x ] denote the element in ML represented by each (ỹ , x) ∈ M̃L.
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Singular flows

Suspension construction

The fiber bundle map:

$̃ : M̃L = L̃× R→ L̃ the Γ-equivariant map given by the first factor
projection induces the map:

$ : ML = L̃×Γ R→ L, $([ỹ , x ]) = π(ỹ).

Note that the typical fiber of $ is R.

The suspension foliation:
FL the foliation on ML transverse to the fibers of $ : ML → L, which is
induced by the Γ-invariant foliation on M̃L with leaves L̃× {x} (x ∈ R).

Since 0 is fixed by the Γ-action on R, the leaf L̃ ≡ L̃× {0} of F̃L
projects to a leaf of FL that can be canonically identified with L.
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Singular flows

Local picture near the compact leaf

According to the local stability theorem, (M,F) is described around L
using the suspension foliated manifold (ML,FL).

There are tubular neighborhoods $ : VL → L of L in ML and $ : V → L
of L in M and a diffeomorphism from V to VL, which takes F|V to FL|VL :

V ≡ VL, F|V ≡ FL|VL .

and the flow φt on V ≡ VL is given by

φt ([ỹ , x ]) = [φt
x (ỹ),eκLtx ], [ỹ , x ] ∈ VL ⊂ ML = L̃×Γ R.

Recall that κp 6= 0 is a real number (depending only on L) such that

φ̄t
∗ : TpM/TpF → TpM/TpF , x 7→ eκp tx .
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Singular flows

Riemannian metrics

g0 a Riemannian metric on L.
gFL a leafwise Riemanian metric on (ML,FL), defined by requiring
that the restrictions of the map

$ : ML = L̃×Γ R→ L, $([ỹ , x ]) = π(ỹ),

to the leaves of FL are local isometries.
gML a Riemannian metric on ML \ L = L̃×Γ (R \ {0}):

gML = gFL +
dx2

x2 , [ỹ , x ] ∈ L̃×Γ (R \ {0}),

is bundle-like for FL.
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Singular flows

Riemannian metrics

We fix an identification

V ≡ VL, F|V ≡ FL|VL ,

and easily get a bundle-like metric g1 on (M1,F1) with the above
properties:

g1 is bundle-like for F1;
Ml equipped with gl := g1|M1

l
is a manifold of bounded geometry;

F1
l a Riemannian foliation of bounded geometry;

φt
l a flow of bounded geometry.
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Singular flows

Operators on the transitive point set

Mc =
⊔

l Ml ,F c =
⊔

l Fl , where Ml is a connected compact
manifold with boundary, endowed with a smooth foliation Fl
tangent to the boundary.
dF̊l

the leafwise de Rham differential on Ω(F̊l).

δF̊l
the leafwise de Rham codifferential on Ω(F̊l).

DF̊l
= dF̊l

+ δF̊l
.

For any function ψ : R→ C of class A, f ∈ C∞c (R) and index l , the
operator

P̊l =

∫ ∞
−∞

φt∗ · f (t) dt ◦ ψ(DF̊l
)

is a smoothing operator on M̊l , but its kernel is singular near ∂M̊l .

Yuri A. Kordyukov (Ufa, Russia) Lefschetz trace formulas for flows Glances@Manifolds II 25 / 37



Singular flows

Class A

Definition (Roe1987)
Let A be the Fréchet algebra of functions ψ : R→ C that can be
extended to entire functions on C such that, for each compact subset
K of R, the set { x 7→ ψ(x + iy) | y ∈ K } is bounded in the Schwartz
space S(R).

A contains all functions with compactly supported Fourier transform,
as well as the Gaussians x 7→ e−tx2

with t > 0.
By the Paley-Wiener theorem, the Fourier transform ψ̂ of any ψ ∈ A
satisfies that, for every k ∈ N, there is some Ak > 0 such that, for all
ξ ∈ R,

|ψ̂(ξ)| ≤ Ake−k |ξ| .
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Singular flows

b-calculus (R. Melrose)

Theorem (Alvarez Lopez, Yu.K., Leichtnam)

P̊l =
∫∞
−∞ φ

t∗ · f (t) dt ◦ ψ(DF̊l
) gives rise to Pl ∈ Ψ−∞b (Ml ;

∧
TF∗l ).

The Schwartz kernel KPl is smooth in the interior M̊l × M̊l .
KPl has a C∞ extension to Ml ×Ml \ ∂Ml × ∂Ml that vanishes to all
orders at (∂Ml ×Ml) ∪ (Ml × ∂Ml).
Consider a tubular neighborhood of L ⊂ π0(∂Ml) with coordinates
(ρ, y), ρ ∈ (0,∞), y ∈ L.
Then KPl = KPl (ρ, y , ρ

′, y ′)u(ρ′, y ′)|dρ′||dy ′| has the form

KPl (ρ, y , ρ
′, y ′) =

1
ρ′
κPl (ρ, y ,

ρ′

ρ
, y ′),

where κPl (ρ, y , s, y
′) is smooth up to L (that is, up to ρ = 0).
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Singular flows

b-trace

In a tubular neighborhood of L with coordinates ρ ∈ (0, ε0), y ∈ L,

Plu(ρ, y) =

∫
KPl (ρ, y , ρ

′, y ′)u(ρ′, y ′)|dρ′||dy ′|,

KPl (ρ, y , ρ
′, y ′) =

1
ρ′
κPl (ρ, y ,

ρ′

ρ
, y ′),

and κPl (ρ, y , s, y
′) is smooth up to L (that is, up to ρ = 0).

Definition

bTr (Pl) = lim
ε→0

(∫
ρ>ε

KPl (ρ, y , ρ, y)|dρ||dy |+ ln ε
∫
κPl (0, y ,1, y)|dy |

)
.

Key fact

The functional bTr doesn’t have trace propertry, but bTr [P,P ′] is
expressed in terms of traces of some explicit integral operators on ∂Ml .
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Singular flows

Operators on the transitive point set

Since Mc =
⊔

l Ml ,F c =
⊔

l Fl , we get the operator

P ≡
⊕

l

Pl =

∫ ∞
−∞

φt∗ · f (t) dt ◦ ψ(DF c)

∈ Ψ−∞b (Mc;
∧

TF c∗) ≡
⊕

l

Ψ−∞b (Ml ;
∧

TF∗l ) .

In particular, its b-trace bTr (P) is well-defined.
The b-supertrace of P:

bTr s(P) =
n−1∑
j=1

(−1)j bTr (P(j)),

where P(j) is the restriction to j-forms.
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Singular flows

Heat equation approach to the index theorem

For u > 0, ψu(x) = e−u2x2
, x ∈ R, and, accordingly,

Pu =

∫ ∞
−∞

φt∗ · f (t) dt ◦ e−u2D2
Fc .

d
du Trs Pu = 0, which means that Trs Pu is independent of u.
As u → +∞,

Trs Pu → Trs
∫ ∞
−∞

φt∗ · f (t) dt ◦ Π = 〈L(φ), f 〉.

As u → 0, Trs Pu can be computed, using heat kernel
approximations (fantastic cancellations).

Remark

In our case, b-trace bTr doesn’t satisfy the trace property. Therefore,

d
du

bTr sPu 6= 0.
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Singular flows

Some geometric notions

There is some real number κL 6= 0 such that, for p ∈ L,

φ̄t
∗ : NpF → NpF , x → eκLtx .

The holonomy homomorphism

h̄L : Γ := π1L̃→ Diffeo+(R,0), γ 7→ h̄L,γ ,

with h̄L,γ(x) = aL,γx for some homomorphism Γ→ R+, γ 7→ aL,γ .
Relative periods:

tL,γ = −κ−1
L log aL,γ .
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Singular flows

Some geometric notions

Fix generators γ1, . . . , γk of Γ (k = rank Γ).
ci a piecewise smooth loop in L based at p representing γ−1

i .
Using the universal coefficients and Hurewicz theorems, one can
show that there are closed 1-forms β1, . . . , βk on L such that
δij = 〈[βi ], γj〉 = −

∫
cj
βi , and 〈[βi ], ker h〉 = 0.

Consider a closed 1-form η on L:

η = ln(aγ1)β1 + · · ·+ ln(aγk )βk ,

and η̃ is the lift of η to L̃.
If we consider η as a closed leafwise 1-form on the suspension
manifold ML, then there exists a 1-form ω on ML satisfying
TFL = kerω such that

dω = η ∧ ω .
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Singular flows

Derivative of the b-supertrace

Fix an even ψ ∈ A and f ∈ C∞c (R).
For u > 0, let ψu ∈ A, ψu(x) = ψ(ux) and

Pψu ,f =

∫ ∞
−∞

φt∗ · f (t) dt ◦ ψu(DF c)

Theorem
d
du

bTr s(Pψu ,f ) =
∑

L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ R̃L̃,u,tL,γ

)
f (tL,γ) ,

where Tr ΓL is the ΓL-trace of ΓL-invariant operators on L̃ and

R̃L̃,u,t = η̃∧ φ̃t∗
0 ψ
′
u(DL̃)

Yuri A. Kordyukov (Ufa, Russia) Lefschetz trace formulas for flows Glances@Manifolds II 33 / 37



Singular flows

Variation of the b-supertrace and Lefschetz distribution

For u, v > 0,

bTr s(Pψv ,f )− bTr s(Pψu ,f ) =
∑

L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ S̃L̃,u,v ,tL,γ

)
f (tL,γ) ,

S̃L̃,u,v ,t =

∫ v

u
R̃L̃,w ,t dw = η̃∧ φ̃t∗

0
ψ(vDL̃)− ψ(uDL̃)

DL̃
.

The Lefschetz distribution

〈L(φ), f 〉 = bTr s(Pψv ,f )− lim
u→0

∑
L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ S̃L̃,u,v ,tL,γ

)
f (tL,γ).

Here the right-hand side is independent of v .
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Singular flows

Lefschetz distribution

Theorem

There exists the limit of bTr s(Pψu ,f ) as u → 0, which is given on R+ by

lim
u→0

bTr s(Pψu ,f ) =
∑

c

l(c)
∞∑

k=1

εkl(c)(c) · f (kl(c))

where c runs over all closed orbits of φt , l(c) denotes the minimal
period of c, and x is an arbitrary point of c.
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Singular flows

Trace formula

Corollary

L(φ) is a well-defined distribution on R+ and

〈L(φ), f 〉 = lim
u→0

bTr s(Pψu ,f ).

Theorem
We have

L(φ) =
∑

c

l(c)
∞∑

k=1

εkl(c)(c) · δkl(c)

on R+, where c runs over all closed orbits of φt , l(c) denotes the
minimal period of c, and x is an arbitrary point of c.
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Singular flows

Concluding remarks

Remark
The next problem is to give a cohomological interpretation of the limit
as v → +∞ of

bTr s(Pψv ,f )− lim
u→0

∑
L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ S̃L̃,u,v ,tL,γ

)
f (tL,γ).

Remark
Contribution of fixed points as in the Guillemin-Sternberg formula.
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