Lefschetz trace formulas for flows on foliated manifolds

Yuri A. Kordyukov joint work in progress with J. Álvarez López and E. Leichtnam

Institute of Mathematics, Ufa Science Center RAS, Ufa, Russia

Glances@Manifolds II

Yuri A. Kordyukov (Ufa, Russia)

Lefschetz trace formulas for flows

The setting

- M a closed manifold, dim M = n.
- \mathcal{F} a codimension one foliation on M.
- $\phi^t : M \to M, t \in \mathbb{R}$ a foliated flow (i.e., ϕ^t takes each leaf to a leaf).

A Lefschetz number of the flow ϕ :

$$L(\phi) = \sum_{j=0}^{n-1} (-1)^j \operatorname{Tr} \left(\phi^* : H^j \to H^j\right)$$

 H^{j} is some cohomology theory associated to \mathcal{F} , Tr is some trace.

The corresponding Lefschetz trace formula:

 $L(\phi) =$ a contribution of closed orbits and fixed points of the flow.

Yuri A. Kordyukov (Ufa, Russia)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simple flows

Definition

A closed orbit *c* of period *l* (not necessarily minimal) of the flow ϕ is called simple, if

$$\det(\operatorname{id} - \phi'_*: T_x \mathcal{F} \to T_x \mathcal{F}) \neq 0, \quad x \in c.$$

Definition

A fixed point x of the flow ϕ is called simple if

$$\det(\mathrm{id}-\phi_*^t:T_xM\to T_xM)\neq 0,\quad t\neq 0.$$

- Fix(ϕ) the fixed point set of ϕ (closed in *M*).
- *M*⁰ the *F*-saturation of Fix(φ) (the union of leaves with fixed points).

Observe that M^0 is ϕ -invariant.

• $M^1 = M \setminus M^0$ the transitive point set.

Yuri A. Kordyukov (Ufa, Russia)

Lefschetz trace formulas for flows

Simple flows

Definition

The foliated flow ϕ is simple, i.e.:

- all of its fixed points and closed orbits are simple,
- its orbits in *M*¹ are transverse to the leaves:

$$T_{x}M = \mathbb{R} Z(x) \oplus T_{x}\mathcal{F}, \quad x \in M^{1},$$

where Z is the infinitesimal generator of ϕ (a vector field on M).

$\ensuremath{\mathcal{F}}$ is a foliation almost without holonomy:

If ϕ is simple, then:

- M^0 is a finite union of compact leaves,
- only the leaves in *M*⁰ may have non-trivial holonomy groups.

Guiilemin-Sternberg formula

There is a canonical expression for the right-hand side of the Lefschetz trace formula, which follows from the Guilemin-Sternberg formula.

In $\mathcal{D}'(\mathbb{R}^+)$,

$$L(\phi) = \sum_{c} l(c) \sum_{k=1}^{\infty} \varepsilon_{kl(c)}(c) \delta_{kl(c)} + \sum_{p} \varepsilon_{p} |1 - e^{\varkappa_{p} t}|^{-1},$$

c runs over all closed orbits and *p* over all fixed points of ϕ :

- I(c) the minimal period of c,
- $\varepsilon_l(c) := \text{sign det} \left(\text{id} \phi_*^l : T_x \mathcal{F} \to T_x \mathcal{F} \right), x \in c.$
- $\varepsilon_{\rho} := \text{sign det} \left(\text{id} \phi_*^t : T_{\rho} \mathcal{F} \to T_{\rho} \mathcal{F} \right), t > 0.$
- $\varkappa_p \neq 0$ is a real number such that

$$\bar{\phi}^t_*: T_{\rho}M/T_{\rho}\mathcal{F} \to T_{\rho}M/T_{\rho}\mathcal{F}, \quad x \mapsto e^{\varkappa_{\rho}t}x.$$

Problems

Problem

To define a Lefschetz number of the flow ϕ :

$$L(\phi) = \sum_{j=0}^{n-1} (-1)^j \operatorname{Tr} (\phi^* : H^j \to H^j)$$

- H^j is some cohomology theory associated with \mathcal{F} ,
- Tr is a trace,

in such a way that the above Guillemin-Sternberg formula holds.

Motivation:

Deninger's program to study zeta- and L-functions for algebraic schemes over the integers, in particular, the Riemann zeta-function (Berlin, ICM, 1998).

Nonsingular flows

ASSUMPTIONS:

- M a closed manifold, dim M = n.
- \mathcal{F} a codimension one foliation on M.
- $\phi^t : M \to M, t \in \mathbb{R}$ a simple foliated flow.
- ϕ has no fixed points.

Jesús A. Álvarez López, Y. K., Distributional Betti numbers of transitive foliations of codimension one. Foliations: geometry and dynamics (Warsaw, 2000), 159–183, World Sci. Publ., River Edge, NJ, 2002.

イロト イポト イラト イラト

Leafwise de Rham complex

 $(\Omega(\mathcal{F}), d_{\mathcal{F}})$ the leafwise de Rham complex of \mathcal{F} :

• $\Omega^{\cdot}(\mathcal{F}) = C^{\infty}(M, \Lambda^{\cdot}T^{*}\mathcal{F})$ smooth leafwise differential forms;

• $d_{\mathcal{F}}: \Omega^{\cdot}(\mathcal{F}) \to \Omega^{\cdot+1}(\mathcal{F})$ the leafwise de Rham differential.

In a foliated chart with coordinates $(x_1, \ldots, x_{n-1}, y) \in \mathbb{R}^{n-1} \times \mathbb{R}$ such that leaves are given by y = c, a *p*-form $\omega \in \Omega^p(\mathcal{F})$ is written as

$$\omega = \sum_{\alpha_1 < \alpha_2 < \ldots < \alpha_p} a_{\alpha}(x, y) dx_{\alpha_1} \wedge \ldots \wedge dx_{\alpha_p}$$

and $d_{\mathcal{F}}\omega\in\Omega^{p+1}(\mathcal{F})$ is given by

$$d_{\mathcal{F}}\omega = \sum_{j=1}^{n-1} \sum_{\alpha_1 < \alpha_2 < \ldots < \alpha_p} \frac{\partial a_{\alpha}}{\partial x_j} (x, y) dx_j \wedge dx_{\alpha_1} \wedge \ldots \wedge dx_{\alpha_p}$$

Leafwise de Rham cohomology

• The reduced leafwise de Rham cohomology of \mathcal{F} :

$$\overline{H}(\mathcal{F}) = \ker d_{\mathcal{F}} / \overline{\operatorname{im} d_{\mathcal{F}}},$$

the closure is in C^{∞} -topology.

• ϕ is a foliated flow $\Longrightarrow d_{\mathcal{F}} \circ \phi^t = \phi^t \circ d_{\mathcal{F}}$. The induced action:

$$\phi^{t*}:\overline{H}(\mathcal{F})\to\overline{H}(\mathcal{F}).$$

Question

The trace of $\phi^{t*}: \overline{H}(\mathcal{F}) \to \overline{H}(\mathcal{F})$?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The leafwise Hodge decomposition

- \mathcal{F} is a Riemannian foliation.
- g the Riemannian metric on M such that the infinitesimal generator Z of the flow φ is of length one and is orthogonal to the leaves — a bundle-like metric.
- Δ_F = d_Fδ_F + δ_Fd_F the leafwise Laplacian on Ω(F) (a second order tangentially elliptic differential operator on M).
- $\mathcal{H}(\mathcal{F})$ the space of leafwise harmonic forms on *M*:

$$\mathcal{H}(\mathcal{F}) = \{ \omega \in \Omega(\mathcal{F}) : \Delta_{\mathcal{F}} \omega = \mathbf{0} \}.$$

Theorem (Alvarez Lopez - Yu. K) The Hodge isomorphism

$$\overline{H}(\mathcal{F})\cong \mathcal{H}(\mathcal{F}).$$

Transverse ellipticity

The leafwise de Rham complex $(\Omega(\mathcal{F}), d_{\mathcal{F}})$ of \mathcal{F} as well as the leafwise Laplacian $\Delta_{\mathcal{F}}$ are transversally elliptic relative to the action of the group \mathbb{R} , given by the flow ϕ

The principal symbol σ(Δ_F) of Δ_F is a section of the vector bundle Hom(π*Λ[·]T*F) over T*M (actually, a scalar function). Here π : T*M → M is a natural projection.

Transverse ellipticity means that σ(Δ_F)(x, ξ) is invertible for any (x, ξ) ∈ T*M \ 0 such that ⟨ξ, Z(x)⟩ = 0, where Z is the infinitesimal generator of φ
 (in other words, for any (x, ξ) ∈ T*M orthogonal to the orbits of φ).

The index theory for transversally elliptic operators

- Atiyah-Singer, 1973-1974, for compact Lie groups;
- Singer-Hörmander, 1974, definition of the index for noncompact Lie groups.

For any $f \in C^{\infty}_{c}(\mathbb{R})$, define

$$A_f = \int_{\mathbb{R}} \phi^{t*} \cdot f(t) \, dt \circ \Pi : L^2 \Omega(\mathcal{F}) \to L^2 \Omega(\mathcal{F}),$$

where $\Pi: L^2\Omega(\mathcal{F}) \to L^2\mathcal{H}(\mathcal{F})$ is the orthogonal projection.

A_f is a smoothing operator:

For any $f \in C_c^{\infty}(\mathbb{R})$, the Schwartz kernel $K_{A_f} = K_{A_f}(x, y)|dy|$ is smooth:

$$A_f u(x) = \int_M K_{A_f}(x, y) u(y) |dy|.$$

The Lefschetz distribution

In particular, A_f is of trace class and

$$\operatorname{Tr} A_f = \int_M \operatorname{tr} K_{A_f}(x, x) |dx|.$$

The Lefschetz distribution $L(\phi) \in \mathcal{D}'(\mathbb{R})$:

-

$$< L(\phi), f >= \operatorname{Tr}^{s} A_{f} := \sum_{j=1}^{n-1} (-1)^{j} \operatorname{Tr} A_{f}^{(i)}, \quad f \in C_{c}^{\infty}(\mathbb{R}),$$

where $A_f^{(i)}$ is the restriction of A_f to $\Omega^i(\mathcal{F})$.

Yuri A. Kordyukov (Ufa, Russia)

Lefschetz trace formulas for flows

Glances@Manifolds II 13 / 37

The Lefschetz formula

Theorem (Alvarez Lopez - Y.K.)

Assume that ϕ is simple and has no fixed points.

• On $\mathbb{R} \setminus \{0\}$

$$L(\phi) = \sum_{c} l(c) \sum_{k \neq 0} \varepsilon_{kl(c)}(c) \delta_{kl(c)},$$

when c runs over all closed orbits of ϕ and l(c) denotes the minimal period of c.

• In some neighborhood of 0 in \mathbb{R} :

$$L(\phi) = \chi_{\Lambda}(\mathcal{F}) \cdot \delta_0.$$

 $\chi_{\Lambda}(\mathcal{F})$ the Λ -Euler characteristic of \mathcal{F} given by the holonomy invariant transverse measure Λ (Connes, 1979).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The setting

ASSUMPTION:

- *M* a closed manifold, dim M = n.
- \mathcal{F} a codimension one foliation on M.
- $\phi^t : M \to M, t \in \mathbb{R}$ a simple foliated flow.
- Fix(ϕ) the fixed point set of ϕ (closed in *M*).
- *M*⁰ the *F*-saturation of Fix(φ) (the union of leaves with fixed points).
- $M^1 = M \setminus M^0$ the transitive point set.

Definition

The foliated flow ϕ is simple, i.e.:

- all of its fixed points and closed orbits are simple,
- its orbits in *M*¹ are transverse to the leaves.

Difficulties

- The leafwise de Rham complex (Ω(F), d_F) of F as well as the leafwise Laplacian Δ_F are transversally elliptic only on the transitive point set M¹, not on M⁰.
- As a consequence, the operator

$$\mathcal{A}_f = \int_{\mathbb{R}} \phi^{t*} \cdot f(t) \, dt \circ \Pi : L^2 \Omega(\mathcal{F}) o L^2 \Omega(\mathcal{F})$$

is not a smoothing operator. Its Schwartz kernel is smooth on $M^1 \times M^1$ and singular near $M^0 \times M^0$. So its trace is not well-defined.

 I don't discuss the leafwise de Rham complex (Ω(F), d_F) and related Hodge theory (an open problem).
 Observe that F is not Riemannian.

The transitive point set and its blow-up

• M_l^1 , l = 1, ..., r, the connected components of M^1 :

$$(M^1,\mathcal{F}^1)=\bigsqcup_l(M^1_l,\mathcal{F}^1_l).$$

M^l is the closure of *M_l*¹: *M^l* = *M_l*¹. Thus, *M_l* is a connected compact manifold with boundary, endowed with a smooth foliation *F_l* tangent to the boundary.
Put *M^c* := | |_l *M_l*, *F^c* := | |_l *F_l*.

A smooth surjective local embedding $\pi : (M^c, \mathcal{F}^c) \rightarrow (M, \mathcal{F})$:

- for each I, $\pi : \mathring{M}_I \to M_I^1$ is a diffeomorphism;
- $\pi : \partial M^c \to M^0$ is a 2-fold covering map whose restriction to every connected component is a diffeomorphism.
- ϕ^t lifts to a simple foliated flow $\phi^{c,t}$ of \mathcal{F}^c tangent to ∂M^c .

Riemannian metric of bounded geometry

There is a Riemannian metric g^1 on the transitive point set M^1 :

- g^1 is bundle-like for \mathcal{F}^1 ;
- M_l^1 equipped with $g_l := g^1|_{M_l^1}$ is a manifold of bounded geometry;
- \mathcal{F}_{l}^{1} a Riemannian foliation of bounded geometry;
- ϕ_l^t a flow of bounded geometry.

Remarks:

- Observe that g^1 is singular at M^0 .
- Each (M_l^1, g_l^1) is a Riemannian manifold with cylindrical ends.

We use a very concrete choice of such a metric g^1 . To introduce it, we need to describe a local structure of the foliation near M^0 .

Yuri A. Kordyukov (Ufa, Russia)

- 31

イロト イポト イラト イラト

Suspension construction

Using the local stability theorem, one can show that \mathcal{F} can be described around a leaf *L* in M^0 by using the suspension construction.

The data:

- L a connected closed manifold;
- a homomorphism (the holonomy homomorphism)

$$ar{h}: \mathsf{\Gamma}:=\pi_1 L/\operatorname{ker} h o \operatorname{\mathsf{Diffeo}}_+(\mathbb{R},\mathsf{0}), \gamma\mapsto ar{h}_\gamma, \quad ar{h}_\gamma(x)=a_\gamma x_\gamma$$

where $\gamma \in \Gamma \mapsto a_{\gamma} \in \mathbb{R}^+$ is a homomorphism.

4 D K 4 B K 4 B K 4 B K

Suspension construction

The holonomy covering

 $\pi:\widetilde{L}\to L$ the regular covering map with

$$\pi_1 \widetilde{L} \equiv \ker h \Leftrightarrow \operatorname{Aut}(\pi) \equiv \Gamma.$$

The canonical left action of each $\gamma \in \Gamma$ on \widetilde{L} is denoted by $\widetilde{y} \mapsto \gamma \cdot \widetilde{y}$.

The suspension manifold defined by the above data:

 $M_L = \widetilde{L} \times_{\Gamma} \mathbb{R}$ the orbit space for the diagonal Γ -action on $\widetilde{M}_L = \widetilde{L} \times \mathbb{R}$:

$$\gamma \cdot (\tilde{y}, x) = (\gamma \cdot \tilde{y}, a_{\gamma} x). \quad (\tilde{y}, x) \in \tilde{L} \times \mathbb{R}.$$

Let $[\tilde{y}, x]$ denote the element in M_L represented by each $(\tilde{y}, x) \in \widetilde{M}_L$.

4 D K 4 B K 4 B K 4 B K

Suspension construction

The fiber bundle map:

 $\widetilde{\varpi}: \widetilde{M}_L = \widetilde{L} \times \mathbb{R} \to \widetilde{L}$ the Γ -equivariant map given by the first factor projection induces the map:

$$\varpi: M_L = \widetilde{L} \times_{\Gamma} \mathbb{R} \to L, \quad \varpi([\widetilde{y}, x]) = \pi(\widetilde{y}).$$

Note that the typical fiber of ϖ is \mathbb{R} .

The suspension foliation:

 \mathcal{F}_L the foliation on M_L transverse to the fibers of $\varpi : M_L \to L$, which is induced by the Γ -invariant foliation on \widetilde{M}_L with leaves $\widetilde{L} \times \{x\}$ ($x \in \mathbb{R}$).

Since 0 is fixed by the Γ -action on \mathbb{R} , the leaf $\widetilde{L} \equiv \widetilde{L} \times \{0\}$ of $\widetilde{\mathcal{F}}_L$ projects to a leaf of \mathcal{F}_L that can be canonically identified with L.

A B b 4 B b

Local picture near the compact leaf

According to the local stability theorem, (M, \mathcal{F}) is described around *L* using the suspension foliated manifold (M_L, \mathcal{F}_L) .

There are tubular neighborhoods $\varpi : V_L \to L$ of L in M_L and $\varpi : V \to L$ of L in M and a diffeomorphism from V to V_L , which takes $\mathcal{F}|_V$ to $\mathcal{F}_L|_{V_L}$:

$$V \equiv V_L, \quad \mathcal{F}|_V \equiv \mathcal{F}_L|_{V_L}.$$

and the flow ϕ^t on $V \equiv V_L$ is given by

$$\phi^t([\tilde{y},x]) = [\phi^t_x(\tilde{y}), \boldsymbol{e}^{\varkappa_L t} x], \quad [\tilde{y},x] \in V_L \subset M_L = \widetilde{L} \times_{\Gamma} \mathbb{R}.$$

Recall that $\varkappa_p \neq 0$ is a real number (depending only on *L*) such that

$$\bar{\phi}^t_*: T_{\rho}M/T_{\rho}\mathcal{F} \to T_{\rho}M/T_{\rho}\mathcal{F}, \quad x \mapsto e^{\varkappa_{\rho}t}x.$$

Riemannian metrics

- g^0 a Riemannian metric on *L*.
- *g*_{*F*_L} a leafwise Riemanian metric on (*M*_L, *F*_L), defined by requiring that the restrictions of the map

$$\varpi: M_L = \widetilde{L} \times_{\Gamma} \mathbb{R} \to L, \quad \varpi([\widetilde{y}, x]) = \pi(\widetilde{y}),$$

to the leaves of \mathcal{F}_L are local isometries.

• g_{M_L} a Riemannian metric on $M_L \setminus L = \widetilde{L} \times_{\Gamma} (\mathbb{R} \setminus \{0\})$:

$$g_{M_L} = g_{\mathcal{F}_L} + rac{dx^2}{x^2}, \quad [\widetilde{y}, x] \in \widetilde{L} imes_{\Gamma} (\mathbb{R} \setminus \{0\}),$$

is bundle-like for \mathcal{F}_L .

イロト イポト イラト イラト

Riemannian metrics

We fix an identification

$$V \equiv V_L, \quad \mathcal{F}|_V \equiv \mathcal{F}_L|_{V_L},$$

and easily get a bundle-like metric g^1 on (M^1, \mathcal{F}^1) with the above properties:

- g^1 is bundle-like for \mathcal{F}^1 ;
- M_l equipped with $g_l := g^1|_{M_l^1}$ is a manifold of bounded geometry;
- \mathcal{F}_{l}^{1} a Riemannian foliation of bounded geometry;
- ϕ_l^t a flow of bounded geometry.

Operators on the transitive point set

- $M^c = \bigsqcup_I M_I$, $\mathcal{F}^c = \bigsqcup_I \mathcal{F}_I$, where M_I is a connected compact manifold with boundary, endowed with a smooth foliation \mathcal{F}_I tangent to the boundary.
- $d_{\mathring{\mathcal{F}}_l}$ the leafwise de Rham differential on $\Omega(\mathring{\mathcal{F}}_l)$.
- $\delta_{\mathring{F}_l}$ the leafwise de Rham codifferential on $\Omega(\mathring{F}_l)$.
- $D_{\mathring{\mathcal{F}}_l} = d_{\mathring{\mathcal{F}}_l} + \delta_{\mathring{\mathcal{F}}_l}.$

For any function $\psi : \mathbb{R} \to \mathbb{C}$ of class \mathcal{A} , $f \in C_c^{\infty}(\mathbb{R})$ and index I, the operator

$$\mathring{P}_{l} = \int_{-\infty}^{\infty} \phi^{t*} \cdot f(t) \, dt \circ \psi(\mathcal{D}_{\mathring{\mathcal{F}}_{l}})$$

is a smoothing operator on \mathring{M}_l , but its kernel is singular near $\partial \mathring{M}_l$.

Class \mathcal{A}

Definition (Roe1987)

Let \mathcal{A} be the Fréchet algebra of functions $\psi : \mathbb{R} \to \mathbb{C}$ that can be extended to entire functions on \mathbb{C} such that, for each compact subset K of \mathbb{R} , the set { $x \mapsto \psi(x + iy) \mid y \in K$ } is bounded in the Schwartz space $\mathcal{S}(\mathbb{R})$.

 \mathcal{A} contains all functions with compactly supported Fourier transform, as well as the Gaussians $x \mapsto e^{-tx^2}$ with t > 0. By the Paley-Wiener theorem, the Fourier transform $\hat{\psi}$ of any $\psi \in \mathcal{A}$ satisfies that, for every $k \in \mathbb{N}$, there is some $A_k > 0$ such that, for all $\xi \in \mathbb{R}$,

$$|\hat{\psi}(\xi)| \leq A_k e^{-k|\xi|}$$

b-calculus (R. Melrose)

Theorem (Alvarez Lopez, Yu.K., Leichtnam)

 $\mathring{P}_{l} = \int_{-\infty}^{\infty} \phi^{t*} \cdot f(t) dt \circ \psi(D_{\mathring{\mathcal{F}}_{l}})$ gives rise to $P_{l} \in \Psi_{b}^{-\infty}(M_{l}; \bigwedge T\mathcal{F}_{l}^{*})$.

- The Schwartz kernel K_{P_l} is smooth in the interior $\mathring{M}_l \times \mathring{M}_l$.
- *K_{P_l}* has a *C*[∞] extension to *M_l* × *M_l* \ ∂*M_l* × ∂*M_l* that vanishes to all orders at (∂*M_l* × *M_l*) ∪ (*M_l* × ∂*M_l*).
- Consider a tubular neighborhood of L ⊂ π₀(∂M_l) with coordinates (ρ, y), ρ ∈ (0,∞), y ∈ L. Then K_{Pl} = K_{Pl}(ρ, y, ρ', y')u(ρ', y')|dρ'||dy'| has the form

$$K_{P_l}(\rho, \mathbf{y}, \rho', \mathbf{y'}) = \frac{1}{\rho'} \kappa_{P_l}(\rho, \mathbf{y}, \frac{\rho'}{\rho}, \mathbf{y'}),$$

where $\kappa_{P_l}(\rho, y, s, y')$ is smooth up to *L* (that is, up to $\rho = 0$).

b-trace

In a tubular neighborhood of *L* with coordinates $\rho \in (0, \epsilon_0), y \in L$,

$$\mathcal{P}_{I}u(
ho,\mathbf{y}) = \int \mathcal{K}_{\mathcal{P}_{I}}(
ho,\mathbf{y},
ho',\mathbf{y}')u(
ho',\mathbf{y}')|d
ho'||dy'|,$$
 $\mathcal{K}_{\mathcal{P}_{I}}(
ho,\mathbf{y},
ho',\mathbf{y}') = rac{1}{
ho'}\kappa_{\mathcal{P}_{I}}(
ho,\mathbf{y},rac{
ho'}{
ho},\mathbf{y}'),$

and $\kappa_{P_l}(\rho, y, s, y')$ is smooth up to *L* (that is, up to $\rho = 0$). Definition

^bTr (
$$P_l$$
) = $\lim_{\epsilon \to 0} \left(\int_{\rho > \epsilon} K_{P_l}(\rho, y, \rho, y) |d\rho| |dy| + \ln \epsilon \int \kappa_{P_l}(0, y, 1, y) |dy| \right).$

Key fact

The functional ^bTr doesn't have trace propertry, but ^bTr [P, P'] is expressed in terms of traces of some explicit integral operators on ∂M_l .

Yuri A. Kordyukov (Ufa, Russia)

Operators on the transitive point set

Since $M^c = \bigsqcup_I M_I, \mathcal{F}^c = \bigsqcup_I \mathcal{F}_I$, we get the operator

$$P \equiv \bigoplus_{I} P_{I} = \int_{-\infty}^{\infty} \phi^{t*} \cdot f(t) \, dt \circ \psi(D_{\mathcal{F}^{c}})$$
$$\in \Psi_{b}^{-\infty}(M^{c}; \bigwedge T\mathcal{F}^{c*}) \equiv \bigoplus_{I} \Psi_{b}^{-\infty}(M_{I}; \bigwedge T\mathcal{F}_{I}^{*}) \, .$$

In particular, its b-trace ${}^{b}Tr(P)$ is well-defined. The b-supertrace of *P*:

^bTr ^s(**P**) =
$$\sum_{j=1}^{n-1} (-1)^{j}$$
^bTr (**P**^(j)),

where $P^{(j)}$ is the restriction to *j*-forms.

Heat equation approach to the index theorem

• For $u > 0, \psi_u(x) = e^{-u^2 x^2}, x \in \mathbb{R}$, and, accordingly,

$$P_{u} = \int_{-\infty}^{\infty} \phi^{t*} \cdot f(t) \, dt \circ e^{-u^{2} D_{\mathcal{F}^{c}}^{2}}.$$

d/du Tr^s P_u = 0, which means that Tr^s P_u is independent of u.
As u → +∞,

$$\operatorname{Tr}^{s} P_{u} \to \operatorname{Tr}^{s} \int_{-\infty}^{\infty} \phi^{t*} \cdot f(t) \, dt \circ \Pi = \langle \mathcal{L}(\phi), f \rangle.$$

As *u* → 0, Tr^s P_u can be computed, using heat kernel approximations (fantastic cancellations).

Remark

In our case, b-trace bTr doesn't satisfy the trace property. Therefore,

$$\frac{d}{du}{}^{\mathrm{b}}\mathrm{Tr} {}^{\mathrm{s}}\boldsymbol{P}_{u} \neq 0.$$

Some geometric notions

• There is some real number $\varkappa_L \neq 0$ such that, for $p \in L$,

$$\bar{\phi}^t_*: N_p \mathcal{F} \to N_p \mathcal{F}, \quad x \to e^{\varkappa_L t} x.$$

The holonomy homomorphism

$$ar{h}_L: \Gamma := \pi_1 \widetilde{L} o \mathsf{Diffeo}_+(\mathbb{R}, \mathbf{0}), \quad \gamma \mapsto ar{h}_{L, \gamma},$$

with $\bar{h}_{L,\gamma}(x) = a_{L,\gamma}x$ for some homomorphism $\Gamma \to \mathbb{R}^+$, $\gamma \mapsto a_{L,\gamma}$. • Relative periods:

$$t_{L,\gamma} = -\varkappa_L^{-1} \log a_{L,\gamma} \; .$$

Yuri A. Kordyukov (Ufa, Russia)

Some geometric notions

- Fix generators $\gamma_1, \ldots, \gamma_k$ of Γ ($k = \operatorname{rank} \Gamma$).
- c_i a piecewise smooth loop in *L* based at *p* representing γ_i^{-1} .
- Using the universal coefficients and Hurewicz theorems, one can show that there are closed 1-forms β_1, \ldots, β_k on *L* such that $\delta_{ij} = \langle [\beta_i], \gamma_j \rangle = -\int_{c_j} \beta_i$, and $\langle [\beta_i], \text{ker } h \rangle = 0$.
- Consider a closed 1-form η on *L*:

$$\eta = \ln(a_{\gamma_1}) \beta_1 + \cdots + \ln(a_{\gamma_k}) \beta_k ,$$

and $\tilde{\eta}$ is the lift of η to \tilde{L} .

• If we consider η as a closed leafwise 1-form on the suspension manifold M_L , then there exists a 1-form ω on M_L satisfying $T\mathcal{F}_L = \ker \omega$ such that

$$d\omega = \eta \wedge \omega$$
.

Derivative of the b-supertrace

Fix an even $\psi \in \mathcal{A}$ and $f \in C_c^{\infty}(\mathbb{R})$. For u > 0, let $\psi_u \in \mathcal{A}$, $\psi_u(x) = \psi(ux)$ and

$$\mathsf{P}_{\psi_u,f} = \int_{-\infty}^{\infty} \phi^{t*} \cdot f(t) \, dt \circ \psi_u(\mathcal{D}_{\mathcal{F}^c})$$

Theorem

$$\frac{d}{du}{}^{\mathrm{b}}\mathrm{Tr}\,{}^{\mathrm{s}}(\mathcal{P}_{\psi_{U},f}) = \sum_{L \in \pi_{0}(\mathcal{M}^{0})} \frac{2}{|\varkappa_{L}|} \sum_{\gamma \in \Gamma_{L}} \mathrm{Tr}\,{}^{\mathrm{s}}_{\Gamma_{L}} \left(T_{\gamma}^{*}\widetilde{\mathcal{P}}_{\widetilde{L},u,t_{L,\gamma}}\right) f(t_{L,\gamma}) ,$$

where $\operatorname{Tr}_{\Gamma_L}$ is the Γ_L -trace of Γ_L -invariant operators on \widehat{L} and

$$\widetilde{R}_{\widetilde{L},u,t} = \widetilde{\eta} \wedge \widetilde{\phi}_0^{t*} \psi'_u(D_{\widetilde{L}})$$

э

Variation of the b-supertrace and Lefschetz distribution

For *u*, *v* > 0,

^bTr ^s(
$$\mathcal{P}_{\psi_{\nu},f}$$
) - ^bTr ^s($\mathcal{P}_{\psi_{u},f}$) = $\sum_{L \in \pi_{0}(\mathcal{M}^{0})} \frac{2}{|\varkappa_{L}|} \sum_{\gamma \in \Gamma_{L}} \operatorname{Tr} \overset{s}{\Gamma_{L}} \left(T_{\gamma}^{*} \widetilde{S}_{\widetilde{L},u,\nu,t_{L,\gamma}} \right) f(t_{L,\gamma}) ,$

$$\widetilde{S}_{\widetilde{L},u,v,t} = \int_{u}^{v} \widetilde{R}_{\widetilde{L},w,t} \, dw = \widetilde{\eta} \wedge \widetilde{\phi}_{0}^{t*} \, \frac{\psi(vD_{\widetilde{L}}) - \psi(uD_{\widetilde{L}})}{D_{\widetilde{L}}} \, .$$

The Lefschetz distribution

$$\langle L(\phi), f \rangle = {}^{\mathrm{b}}\mathrm{Tr}\,{}^{\mathrm{s}}(P_{\psi_{V}, f}) - \lim_{u \to 0} \sum_{L \in \pi_{0}(M^{0})} \frac{2}{|\varkappa_{L}|} \sum_{\gamma \in \Gamma_{L}} \mathrm{Tr}\,{}^{\mathrm{s}}_{\Gamma_{L}} \left(T_{\gamma}^{*} \widetilde{S}_{\widetilde{L}, u, V, t_{L, \gamma}}\right) f(t_{L, \gamma}).$$

Here the right-hand side is independent of v.

Yuri A. Kordyukov (Ufa, Russia)

Lefschetz trace formulas for flows

Lefschetz distribution

Theorem

There exists the limit of ${}^{\mathrm{b}}\mathrm{Tr} {}^{\mathrm{s}}(P_{\psi_{u},f})$ as $u \to 0$, which is given on \mathbb{R}_{+} by

$$\lim_{u\to 0} {}^{\mathrm{b}}\mathrm{Tr} \, {}^{\mathrm{s}}(P_{\psi_u,f}) = \sum_{c} I(c) \sum_{k=1}^{\infty} \varepsilon_{kl(c)}(c) \cdot f(kl(c))$$

where c runs over all closed orbits of ϕ^t , l(c) denotes the minimal period of c, and x is an arbitrary point of c.

Yuri A. Kordyukov (Ufa, Russia)

Lefschetz trace formulas for flows

Glances@Manifolds II 35 / 37

Trace formula

Corollary

 $L(\phi)$ is a well-defined distribution on \mathbb{R}_+ and

$$\langle L(\phi), f \rangle = \lim_{u \to 0} {}^{\mathrm{b}}\mathrm{Tr} \, {}^{\mathrm{s}}(P_{\psi_u, f}).$$

Theorem

We have

$$L(\phi) = \sum_{c} l(c) \sum_{k=1}^{\infty} \varepsilon_{kl(c)}(c) \cdot \delta_{kl(c)}$$

on \mathbb{R}_+ , where c runs over all closed orbits of ϕ^t , l(c) denotes the minimal period of c, and x is an arbitrary point of c.

Concluding remarks

Remark

The next problem is to give a cohomological interpretation of the limit as $v \to +\infty$ of

^bTr ^s(
$$P_{\psi_{v},f}$$
) - $\lim_{u\to 0} \sum_{L\in\pi_{0}(M^{0})} \frac{2}{|\varkappa_{L}|} \sum_{\gamma\in\Gamma_{L}} \operatorname{Tr} {}^{s}_{\Gamma_{L}} (T_{\gamma}^{*}\widetilde{S}_{\widetilde{L},u,v,t_{L,\gamma}}) f(t_{L,\gamma}).$

Remark

Contribution of fixed points as in the Guillemin-Sternberg formula.

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >