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This talk is based on
the joint work with OGUNI Shin-ichi （尾國新一）
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Coarse Baum-Connes conjecture (Roe, Higson, Yu,. . . )

§ Y：proper metric space

§ KX‚pY q：coarse K -homology of Y

§ C˚pY q：a C˚-algebra constructed by Y , called Roe algebra,
which is a non-equivariant analog of the reduced group C˚-algebra.

Conjecture (coarse Baum-Connes)

The following coarse assembly map is an isomorphism.

µY : KX‚pY q Ñ K‚pC˚pY qq.

Proposition

Consider a finitely generated group G．
Suppose that BG is realized by a finite simplicial complex.

§ µG : isomorphism ñ Novikov conj. for G holds.

§ µG b 1Q : injective ñ Gromov-Lawson conj. for G holds.
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Advantage of the coarse geometry

coarse assembly map µY : KX‚pY q Ñ K‚pC˚pY qq.

§ KX‚p´q, K‚pC˚p´qq：Coarse Homology Theory

§ Mayer-Vietoris Principal：
Decompose Y “ A Y B
If µA, µB , µAXB are isomorphisms.
ñ So is µY．

§ Rn “ Rn´1 ˆ p´8, 0s Y Rn´1 ˆ r0,8q.
The intersection = Rn´1 ˆ t0u.
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Theorem (Higson-Roe, Willet)

The coarse Baum-Connes conjecture holds for
geodesic Gromov hyperbolic spaces.

Theorem (Higson-Roe, Willet, O-F)

The coarse Baum-Connes conjecture holds for
CAT(0)-spaces (more generally, for Busemann non-positive curved
spaces)

(REMARK: Above theorems hold without assuming bounded geometry

condition)

Theorem (Yu)

If Y can be coarsely embedded into the Hilbert space
ñ the coarse Baum-Connes conjecture holds for Y .

Remark
§ It is unknown that Gromov hyperbolic space without bounded geometry

can be embedded into the Hilbert space.

§ It is unknown that all CAT-(0) spaces can be embedded in to the Hilbert

space.
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Summary of our results

with Shin-ichi OGUNI, we obtain the following results:

§ The conjecture holds for the relatively hyperbolic groups with
some conditions on parabolic subgroups (2012).

§ Moreover, the conjecture holds for the direct product of
hyperbolic groups, CAT(0)-groups, polycyclic groups and
relatively hyperbolic groups with some conditions on parabolic
subgroups (2015).

We also constructed a nice boundary of the relatively hyperbolic
group, and

§ Compute the K -theory of certain C˚-algebra.

§ Prove the formula to determine the topological dimension of
the boundary by the cohomological dimension of the group.
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δ-hyperbolic space

Definition
Let δ ě 0. A proper geodesic space X is δ-hyperbolic if all
geodesic triangle are δ-thin, i.e., for any a, b, c P X , ab is
contained in the δ-neighborhood of bc Y ca.

Tree is 0-hyperbolicδ-thin triangle
a

b cδ
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Hyperbolic groups

Let G be a finitely generated group.

Definition
G is hyperbolic if the following conditions are satisfied.

§ DX : a proper geodesic δ-hyperbolic space,

§ G œ X properly discontinuously by isometries,

§ X {G is compact.

Remark
G is hyperbolic ô CayleypG, Sq δ-hyperbolic for some δ ě 0 and
for some generating set S.
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Examples of hyperbolic groups

§ Free group F2 “ xa, by

§ π1pMg q, where Mg is a closed surface of genus g ě 2.

§ Let G ă IsompHnq be a torsion-free cocompact lattice, i.e.
Hn{G is a compact hyperbolic manifold. Then G – π1pH{G q

is a hyperbolic group.

§ π1pMq: where M is a compact Riemannian manifold with
strictly negative sectional curvature.
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Non-example: Non-uniform (torsion-free) lattice of Hn.
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Relatively hyperbolic groups
§ G : a finitely generated group.
§ P :“ tP1, . . . ,Pku: a finite family of infinite subgroups.

There is a rigorous definition (formulation) of
“ G is hyperbolic relative to P ”

Example

§ Free product
§ Zn ˚ Zn is hyperbolic rel. to tZn,Znu.

§ Fundamental group of a manifold with negative curvature.
§ M：completed Riemann mfd, non-cpt, finite volume.
n :“ dimM, ´α2 ă KM ă ´β2pα, β P Rq

§ G :“ π1pMq.
§ P : a set of representatives of conjugacy invariant classes of
maximal parabolic subgroups of G with respect to the action
on the universal cover M̃.

§ G is hyperbolic rel. to P.
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Main theorem 1

Theorem (Oguni-F ’12)

§ G：finitely generated group

§ P “ tP1, . . . ,Pku： Pi ă G , 7Pi “ 8, rG : Pi s “ 8.

§ G is hyperbolic relative to P.

For each P P P, we suppose the following two conditions:

§ The space BP is realized by a finite simplicial complex.

§ The coarse Baum-Connes conjecture for P holds.

Then the following two statements holds.

§ The space BG is realized by a finite simplicial complex.

§ The coarse Baum-Connes conjecture for G holds.

Remark
It is unknown that under the above condition, whether G can be
embedded into the Hilbert space or not.
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Main Theorem 2

Theorem (Oguni-F ’15)

Let G be a class of groups consists of CAT(0)-groups, hyperbolic
groups and polycyclic groups.

§ For i P t1, . . . , nu, let Gi be a group belongs to G.
§ For j P t1, . . . ,mu, let Hj be a relatively hyperbolic group with
the condition 7j (See the below)

§ Set G :“
śn

i“1 Gi ˆ
śm

i“1Hj .

Then the coarse Baum-Connes conjecture holds for G.

Condition (7j .)
Hj is hyperbolic relative to a finite family Pj , and for each P P Pj ,

§ P ă Hj , rHj : Ps “ 8, 7P “ 8,

§ P is a direct product of finite members of G,
§ the space BP is realized by a finite simplicial complex.
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Metric spaces version

Theorem (Oguni-F ’15)

Let tXiu
n
i“1 be a finite seq. of proper metric spaces.

Suppose that Xi is one of the following:

§ a geodesic Gromov hyperbolic space,

§ an open cone over a compact metrizable space,

§ a Busemann non-positively curved space, or ,

§ simply connected solvable Lie group with a lattice,

Then the coarse assembly map

µpX1 ˆ ¨ ¨ ¨ ˆ Xnq‚

is an isomorphism.
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Key to the proof: Boundary of the product space

The main ingredient of the proof is to construct a NICE boundary
for a product of metric space X1 ˆ ¨ ¨ ¨ ˆ Xn by the topological join

BX1 ˚ ¨ ¨ ¨ ˚ BXn.
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Key Proposition

Proposition

Let tpXi ,Wi quni“1 be a finite seq. of the pairs of proper metric
space and compact metrizable space.
Suppose that pXi ,Wi q is one of the following:

§ pXi , BXi q : a geodesic Gromov hyperbolic space and the
Gromov boundary.

§ pCpWi q,Wi q: a (metric euclidean) cone over Wi .

§ pXi , BXi q: a Busemann non-positively curved space and the
visual boundary, or

§ pGi , S
ni q: ni -dimensional simply connected solvable Lie group

with a lattice, and ni -dimensional sphere.

Then the transgression map

T : KX˚pX1 ˆ ¨ ¨ ¨ ˆ Xnq Ñ K̃˚´1pW1 ˚ ¨ ¨ ¨ ˚ Wnq

is an isomorphism.
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