The coarse Baum-Connjecture for product of nonpositive curved spaces and groups

FUKAYA Tomohiro 深谷友宏

Tokyo Metropolitan university 首都大学東京

August 2016 Kraków

This talk is based on the joint work with OGUNI Shin-ichi (尾國新一)

Table of contents

Coarse Geometry

Coarse Baum-Connes conjecture

Review of (Relatively) hyperbolic groups

Hyperbolic groups Relatively hyperbolic groups

Main theorems

Relatively hyperbolic groups
Product of non-positively curved groups
Key to the proof: Boundary of the product of metric spaces

Coarse Baum-Connes conjecture (Roe, Higson, Yu,...)

- ▶ *Y*: proper metric space
- $KX_{\bullet}(Y)$: coarse K-homology of Y
- ▶ $C^*(Y)$: a C^* -algebra constructed by Y, called Roe algebra, which is a non-equivariant analog of the reduced group C^* -algebra.

Conjecture (coarse Baum-Connes)

The following coarse assembly map is an isomorphism.

$$\mu_Y \colon KX_{\bullet}(Y) \to K_{\bullet}(C^*(Y)).$$

Proposition

Consider a finitely generated group G.
Suppose that BG is realized by a finite simplicial complex.

• μ_G : isomorphism \Rightarrow Novikov conj. for G holds.

• $\mu_G \otimes 1_{\mathbb{O}}$: injective \Rightarrow Gromov-Lawson conj. for G holds.

4/18

Advantage of the coarse geometry

coarse assembly map $\mu_Y \colon KX_{\bullet}(Y) \to K_{\bullet}(C^*(Y))$.

- ▶ $KX_{\bullet}(-)$, $K_{\bullet}(C^*(-))$: Coarse Homology Theory
- Mayer-Vietoris Principal:

 Decompose $Y = A \cup B$ If $\mu_A, \mu_B, \mu_{A \cap B}$ are isomorphisms. \Rightarrow So is μ_Y .
 - $\mathbb{R}^n = \mathbb{R}^{n-1} \times (-\infty, 0] \cup \mathbb{R}^{n-1} \times [0, \infty)$ The intersection = $\mathbb{R}^{n-1} \times \{0\}$.

Advantage of the coarse geometry

coarse assembly map $\mu_Y \colon KX_{\bullet}(Y) \to K_{\bullet}(C^*(Y))$.

- ▶ $KX_{\bullet}(-)$, $K_{\bullet}(C^*(-))$: Coarse Homology Theory
- Mayer-Vietoris Principal:

 Decompose $Y = A \cup B$ If $\mu_A, \mu_B, \mu_{A \cap B}$ are isomorphisms. \Rightarrow So is μ_Y .
 - $\mathbb{R}^n = \mathbb{R}^{n-1} \times (-\infty, 0] \cup \mathbb{R}^{n-1} \times [0, \infty).$ The intersection = $\mathbb{R}^{n-1} \times \{0\}$.

The coarse Baum-Connes conjecture holds for geodesic Gromov hyperbolic spaces.

Theorem (Higson-Roe, Willet, O-F)

The coarse Baum-Connes conjecture holds for CAT(0)-spaces (more generally, for Busemann non-positive curved spaces)

(REMARK: Above theorems hold without assuming bounded geometry condition)

Theorem (Yu)

If Y can be coarsely embedded into the Hilbert space \Rightarrow the coarse Baum-Connes conjecture holds for Y.

- It is unknown that Gromov hyperbolic space without bounded geometry can be embedded into the Hilbert space.
- It is unknown that all CAT-(0) spaces can be embedded in to the Hilbert space.

The coarse Baum-Connes conjecture holds for geodesic Gromov hyperbolic spaces.

Theorem (Higson-Roe, Willet, O-F)

The coarse Baum-Connes conjecture holds for CAT(0)-spaces (more generally, for Busemann non-positive curved spaces)

(REMARK: Above theorems hold without assuming bounded geometry condition)

Theorem (Yu)

If Y can be coarsely embedded into the Hilbert space ⇒ the coarse Baum-Connes conjecture holds for Y.

- It is unknown that Gromov hyperbolic space without bounded geometry can be embedded into the Hilbert space.
- It is unknown that all CAT-(0) spaces can be embedded in to the Hilbert space.

The coarse Baum-Connes conjecture holds for geodesic Gromov hyperbolic spaces.

Theorem (Higson-Roe, Willet, O-F)

The coarse Baum-Connes conjecture holds for CAT(0)-spaces (more generally, for Busemann non-positive curved spaces)

(REMARK: Above theorems hold without assuming bounded geometry condition)

Theorem (Yu)

If Y can be coarsely embedded into the Hilbert space ⇒ the coarse Baum-Connes conjecture holds for Y.

- It is unknown that Gromov hyperbolic space without bounded geometry can be embedded into the Hilbert space.
- It is unknown that all CAT-(0) spaces can be embedded in to the Hilbert space.

The coarse Baum-Connes conjecture holds for geodesic Gromov hyperbolic spaces.

Theorem (Higson-Roe, Willet, O-F)

The coarse Baum-Connes conjecture holds for CAT(0)-spaces (more generally, for Busemann non-positive curved spaces)

(REMARK: Above theorems hold without assuming bounded geometry condition)

Theorem (Yu)

If Y can be coarsely embedded into the Hilbert space

 \Rightarrow the coarse Baum-Connes conjecture holds for Y.

- It is unknown that Gromov hyperbolic space without bounded geometry can be embedded into the Hilbert space.
- It is unknown that all CAT-(0) spaces can be embedded in to the Hilbert space.

Summary of our results

with Shin-ichi OGUNI, we obtain the following results:

- The conjecture holds for the relatively hyperbolic groups with some conditions on parabolic subgroups (2012).
- Moreover, the conjecture holds for the direct product of hyperbolic groups, CAT(0)-groups, polycyclic groups and relatively hyperbolic groups with some conditions on parabolic subgroups (2015).

We also constructed a nice boundary of the relatively hyperbolic group, and

- ► Compute the *K*-theory of certain *C**-algebra.
- Prove the formula to determine the topological dimension of the boundary by the cohomological dimension of the group.

Summary of our results

with Shin-ichi OGUNI, we obtain the following results:

- The conjecture holds for the relatively hyperbolic groups with some conditions on parabolic subgroups (2012).
- Moreover, the conjecture holds for the direct product of hyperbolic groups, CAT(0)-groups, polycyclic groups and relatively hyperbolic groups with some conditions on parabolic subgroups (2015).

We also constructed a nice boundary of the relatively hyperbolic group, and

- ► Compute the *K*-theory of certain *C**-algebra.
- Prove the formula to determine the topological dimension of the boundary by the cohomological dimension of the group.

Summary of our results

with Shin-ichi OGUNI, we obtain the following results:

- The conjecture holds for the relatively hyperbolic groups with some conditions on parabolic subgroups (2012).
- Moreover, the conjecture holds for the direct product of hyperbolic groups, CAT(0)-groups, polycyclic groups and relatively hyperbolic groups with some conditions on parabolic subgroups (2015).

We also constructed a nice boundary of the relatively hyperbolic group, and

- ▶ Compute the K-theory of certain C^* -algebra.
- Prove the formula to determine the topological dimension of the boundary by the cohomological dimension of the group.

Table of contents

Coarse Geometry

Coarse Baum-Connes conjecture

Review of (Relatively) hyperbolic groups

Hyperbolic groups Relatively hyperbolic groups

Main theorems

Relatively hyperbolic groups
Product of non-positively curved groups
Key to the proof: Boundary of the product of metric spaces

δ -hyperbolic space

Definition

Let $\delta \geqslant 0$. A proper geodesic space X is δ -hyperbolic if all geodesic triangle are δ -thin, i.e., for any $a,b,c\in X$, \overline{ab} is contained in the δ -neighborhood of $\overline{bc}\cup \overline{ca}$.

δ -thin triangle

Tree is 0-hyperbolic

Hyperbolic groups

Let G be a finitely generated group.

Definition

G is hyperbolic if the following conditions are satisfied.

- ${}^{\exists}X$: a proper geodesic δ -hyperbolic space,
- $G \supset X$ properly discontinuously by isometries,
- ➤ X/G is compact.

Remark

G is hyperbolic $\Leftrightarrow \operatorname{Cayley}(G,S)$ δ -hyperbolic for some $\delta \geqslant 0$ and for some generating set S.

Examples of hyperbolic groups

- Free group $F_2 = \langle a, b \rangle$
- $\pi_1(M_g)$, where M_g is a closed surface of genus $g \ge 2$.
- Let $G < \mathrm{Isom}(\mathbb{H}^n)$ be a torsion-free cocompact lattice, i.e. \mathbb{H}^n/G is a compact hyperbolic manifold. Then $G \cong \pi_1(\mathbb{H}/G)$ is a hyperbolic group.
- $\pi_1(M)$: where M is a compact Riemannian manifold with strictly negative sectional curvature.

Non-example: Non-uniform (torsion-free) lattice of \mathbb{H}^n .

=> Gia not hyperbolic (n>3)

12 / 18

Relatively hyperbolic groups

- G: a finitely generated group.
- $\mathbb{P} := \{P_1, \dots, P_k\}$: a finite family of infinite subgroups.

There is a rigorous definition (formulation) of " G is hyperbolic relative to \mathbb{P} "

Example

- Free product
 - $ightharpoonup \mathbb{Z}^n * \mathbb{Z}^n$ is hyperbolic rel. to $\{\mathbb{Z}^n, \mathbb{Z}^n\}$.
- Fundamental group of a manifold with negative curvature.
 - M : completed Riemann mfd, non-cpt, finite volume. n := dim M. $-\alpha^2 < K_M < -\beta^2(\alpha, \beta ∈ \mathbb{R})$
 - $G := \pi_1(M)$.
 - $ightharpoonup \mathbb{P}$: a set of representatives of conjugacy invariant classes of maximal parabolic subgroups of G with respect to the action on the universal cover \tilde{M} .
 - G is hyperbolic rel. to \mathbb{P} .

Relatively hyperbolic groups

- G: a finitely generated group.
- $\mathbb{P} := \{P_1, \dots, P_k\}$: a finite family of infinite subgroups.

There is a rigorous definition (formulation) of "G is hyperbolic relative to \mathbb{P} "

Example

- Free product
 - $\mathbb{Z}^n * \mathbb{Z}^n$ is hyperbolic rel. to $\{\mathbb{Z}^n, \mathbb{Z}^n\}$.
- Fundamental group of a manifold with negative curvature.
 - ► M: completed Riemann mfd, non-cpt, finite volume. $n := \dim M, -\alpha^2 < K_M < -\beta^2(\alpha, \beta \in \mathbb{R})$
 - $G := \pi_1(M)$.
 - \mathbb{P} : a set of representatives of conjugacy invariant classes of maximal parabolic subgroups of G with respect to the action on the universal cover \tilde{M} .
 - G is hyperbolic rel. to \mathbb{P} .

Main theorem 1

Theorem (Oguni-F '12)

- ► G: finitely generated group
- $\mathbb{P} = \{P_1, \dots, P_k\} : P_i < G, \sharp P_i = \infty, \lceil G : P_i \rceil = \infty.$
- G is hyperbolic relative to \mathbb{P} .

For each $P \in \mathbb{P}$, we suppose the following two conditions:

- ▶ The space BP is realized by a finite simplicial complex.
- ► The coarse Baum-Connes conjecture for P holds.

Then the following two statements holds.

- ► The space BG is realized by a finite simplicial complex.
- The coarse Baum-Connes conjecture for G holds.

Remark

It is unknown that under the above condition, whether G can be embedded into the Hilbert space or not.

Main theorem 1

Theorem (Oguni-F '12)

- ▶ G: finitely generated group
- $\mathbb{P} = \{P_1, \dots, P_k\} : P_i < G, \sharp P_i = \infty, [G:P_i] = \infty.$
- G is hyperbolic relative to \mathbb{P} .

For each $P \in \mathbb{P}$, we suppose the following two conditions:

- ▶ The space BP is realized by a finite simplicial complex.
- ► The coarse Baum-Connes conjecture for P holds.

Then the following two statements holds.

- ► The space BG is realized by a finite simplicial complex.
- ► The coarse Baum-Connes conjecture for G holds.

Remark

It is unknown that under the above condition, whether G can be embedded into the Hilbert space or not.

Main theorem 1

Theorem (Oguni-F '12)

- ▶ G: finitely generated group
- $\mathbb{P} = \{P_1, \dots, P_k\} : P_i < G, \sharp P_i = \infty, [G:P_i] = \infty.$
- G is hyperbolic relative to \mathbb{P} .

For each $P \in \mathbb{P}$, we suppose the following two conditions:

- ► The space BP is realized by a finite simplicial complex.
- ► The coarse Baum-Connes conjecture for P holds.

Then the following two statements holds.

- ▶ The space BG is realized by a finite simplicial complex.
- The coarse Baum-Connes conjecture for G holds.

Remark

It is unknown that under the above condition, whether G can be embedded into the Hilbert space or not.

Main Theorem 2

Theorem (Oguni-F '15)

Let \mathcal{G} be a class of groups consists of CAT(0)-groups, hyperbolic groups and polycyclic groups.

- ▶ For $i \in \{1, ..., n\}$, let G_i be a group belongs to G.
- ► For $j \in \{1, ..., m\}$, let H_j be a relatively hyperbolic group with the condition \sharp_j (See the below)
- Set $\mathbb{G} := \prod_{i=1}^n G_i \times \prod_{i=1}^m H_j$.

Then the coarse Baum-Connes conjecture holds for G.

Condition (\sharp_{j})

 H_j is hyperbolic relative to a finite family \mathbb{P}^j , and for each $P \in \mathbb{P}^j$,

- $P < H_j, [H_j : P] = \infty, \sharp P = \infty,$
- ightharpoonup P is a direct product of finite members of \mathcal{G} ,
- the space BP is realized by a finite simplicial complex

Main Theorem 2

Theorem (Oguni-F '15)

Let \mathcal{G} be a class of groups consists of CAT(0)-groups, hyperbolic groups and polycyclic groups.

- ▶ For $i \in \{1, ..., n\}$, let G_i be a group belongs to G.
- ▶ For $j \in \{1, ..., m\}$, let H_j be a relatively hyperbolic group with the condition \sharp_j (See the below)
- Set $\mathbb{G} := \prod_{i=1}^n G_i \times \prod_{i=1}^m H_i$.

Then the coarse Baum-Connes conjecture holds for G.

Condition (\sharp_{j})

 H_j is hyperbolic relative to a finite family \mathbb{P}^j , and for each $P \in \mathbb{P}^j$,

- $P < H_j, [H_j : P] = \infty, \sharp P = \infty,$
- P is a direct product of finite members of G,
- the space BP is realized by a finite simplicial complex.

Metric spaces version

Theorem (Oguni-F '15)

Let $\{X_i\}_{i=1}^n$ be a finite seq. of proper metric spaces. Suppose that X_i is one of the following:

- a geodesic Gromov hyperbolic space,
- an open cone over a compact metrizable space,
- a Busemann non-positively curved space, or ,
- simply connected solvable Lie group with a lattice,

Then the coarse assembly map

$$\mu(X_1 \times \cdots \times X_n)_{\bullet}$$

is an isomorphism.

Key to the proof: Boundary of the product space

The main ingredient of the proof is to construct a NICE boundary for a product of metric space $X_1 \times \cdots \times X_n$ by the topological join

$$\partial X_1 * \cdots * \partial X_n$$
.

Key Proposition

Proposition

Let $\{(X_i, W_i)\}_{i=1}^n$ be a finite seq. of the pairs of proper metric space and compact metrizable space.

Suppose that (X_i, W_i) is one of the following:

- $(X_i, \partial X_i)$: a geodesic Gromov hyperbolic space and the Gromov boundary.
- $(C(W_i), W_i)$: a (metric euclidean) cone over W_i .
- $(X_i, \partial X_i)$: a Busemann non-positively curved space and the visual boundary, or
- (G_i, S^{n_i}) : n_i -dimensional simply connected solvable Lie group with a lattice, and n_i -dimensional sphere.

Then the transgression map

$$T: KX_*(X_1 \times \cdots \times X_n) \to \tilde{K}_{*-1}(W_1 * \cdots * W_n)$$

is an isomorphism.